Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridine)(2-hydroxy-2,2diphenylacetato)copper(II) nitrate dihydrate

Xiao-Jun Wang, Chun Zheng, Shao-Wei Mai, Xuan Xu* and Yi-Fan Luo

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China

Correspondence e-mail: xuxuan2004@yahoo.com.cn

Received 20 August 2010; accepted 3 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.138; data-to-parameter ratio = 13.2.

In the title complex, $[Cu(C_{14}H_{11}O_3)(C_{10}H_8N_2)_2]NO_3\cdot 2H_2O$, the Cu^{II} atom is coordinated by four N atoms from two 2,2'bipyridine ligands and two O atoms from one benzilate ligand in a distorted octahedral geometry. A supramolecular network is formed *via* intermolecular O-H···O and C-H···O hydrogen-bonding interactions. π - π stacking interactions between neighboring pyridine rings are also present, the centroid—centroid distance being 3.808 (2) Å.

Related literature

For related structures, see: Carballo *et al.* (2005); Herrmann *et al.* (1994); Qiu *et al.* (2007).

Experimental

Crystal data $[Cu(C_{14}H_{11}O_3)(C_{10}H_8N_2)_2]NO_3-2H_2O$ $M_r = 701.18$

Monoclinic, $P2_1/c$ a = 10.612 (2) Å b = 25.758 (6) Å c = 12.322 (3) Å $\beta = 108.220 (3)^{\circ}$ $V = 3199.3 (13) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) T_{min} = 0.848, T_{max} = 0.872

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.138$ S = 1.005750 reflections 434 parameters Mo $K\alpha$ radiation $\mu = 0.74 \text{ mm}^{-1}$ T = 296 K $0.23 \times 0.21 \times 0.19 \text{ mm}$

16165 measured reflections 5750 independent reflections 3659 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.057$

6 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.57$ e Å⁻³ $\Delta \rho_{min} = -0.51$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2W−H3W···O5 ⁱ	0.85	2.16	2.844 (6)	138
$O1W - H1W \cdot \cdot \cdot O4^{ii}$	0.85	2.07	2.884 (7)	159
$O2W - H3W \cdot \cdot \cdot O1W^{iii}$	0.85	2.59	3.041 (7)	114
$O1W - H2W \cdot \cdot \cdot O2W^{iii}$	0.85	2.46	3.041 (7)	126
$O1W - H2W \cdot \cdot \cdot O4^{iv}$	0.85	2.28	2.856 (6)	125
$O3-H3\cdots O6^{v}$	0.82	2.48	3.210 (5)	149
O3−H3···O1	0.82	2.10	2.597 (4)	119
$C10-H10\cdots O1W$	0.93	2.41	3.341 (7)	174
C8−H8···O3 ^{iv}	0.93	2.54	3.389 (6)	152
$C4-H4\cdots O5^{vi}$	0.93	2.59	3.488 (6)	162
C12−H12···O5 ^{vii}	0.93	2.38	3.285 (7)	165
C14−H14···O1 ^{viii}	0.93	2.56	3.420 (6)	155
$C17-H17\cdots O1^{viii}$	0.93	2.39	3.270 (5)	159

Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) x - 1, y, z; (vii) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (viii) -x + 1, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2323).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carballo, R., Covelo, B., Vazquez-Lopez, E. M., Garcia-Martinez, E., Castineiras, A. & Niclos, J. (2005). Z. Anorg. Allg. Chem. 631, 785–792.
- Herrmann, W. A., Roesky, P. W., Scherer, W. & Kleine, M. (1994). Organometallics, 13, 4536–4542.
- Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m1245 [doi:10.1107/81600536810035555]

Bis(2,2'-bipyridine)(2-hydroxy-2,2-diphenylacetato)copper(II) nitrate dihydrate

X.-J. Wang, C. Zheng, S.-W. Mai, X. Xu and Y.-F. Luo

Comment

Hydrogen-bonding interactions between ligands are specific and directional. In this context, 2,2'-bipyridine and benzilic acid are excellent candidates for construction of three-demensional network motifs, and can simultaneously coordinate metal ions (Carballo *et al.*, 2005; Herrmann *et al.*, 1994; Qiu *et al.*, 2007). Herein, we report the crystal structure of a new coordination polymer, (I).

In (I), the Cu^{II} centre is coordinated by two oxygen atoms from one benzilate ligand and four N atoms from two 2,2'bipyridine ligands (Fig. 1), and represents a distorted octahedral geometry. The Cu—N distances range from 1.982 (3) to 2.174 (3) Å, and the Cu—O distances are 1.982 (3) and 2.744 (3) Å, respectively. However, the O—Cu—N and N—Cu—N angles fall in the range from 89.06 (1) to 158.18 (1) ° and 77.87 (1) to 175.10 (1) °, respectively. Intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) link each asymmetric unit to form a three-dimensional supramolecular network motif (Fig. 2) in (0 0 1) plane, which is stabilized by π - π stacking interactions between neighboring pyridyl rings (the centriod—centriod distance is 3.808 Å).

Experimental

A mixture of CuNO₃ (0.063 g, 0.5mmol), 2,2'-bipyridine (0.078 g; 0.5 mmol), benzilic acid (0.114 g; 0.5 mmol), water (10 mL) was stirred vigorously for 60 min and the blue block crystals were obtained by evaporating mother liquor.

Refinement

Water H atoms and hydroxyl H atoms were tentatively located from difference Fourier maps and were refined with distance restraints of O–H = 0.84 and 0.82 Å, respectively, H…H = 1.35 Å, and $U_{iso}(H) = 1.5 U_{eq}(O)$. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the asymmetric unit of (I) showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the three-dimensional supramolecular network of the title compound, hydrogen bonds are shown as dashed linesand. The H-atoms not involved in H-bonds have been excluded for clarity.

Bis(2,2'-bipyridine)(2-hydroxy-2,2-diphenylacetato)copper(II) nitrate dihydrate

Crystal data

 $[Cu(C_{14}H_{11}O_3)(C_{10}H_8N_2)_2]NO_3{\cdot}2H_2O$ F(000) = 1452 $M_r = 701.18$ $D_{\rm x} = 1.456 {\rm Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 2592 reflections *a* = 10.612 (2) Å $\theta = 2.2 - 22.7^{\circ}$ *b* = 25.758 (6) Å $\mu = 0.74 \text{ mm}^{-1}$ c = 12.322 (3) Å T = 296 K $\beta = 108.220 (3)^{\circ}$ Block, blue $0.23\times0.21\times0.19~mm$ $V = 3199.3 (13) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII area-detector diffractometer	5750 independent reflections
Radiation source: fine-focus sealed tube	3659 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.057$
φ and ω scans	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -12 \rightarrow 9$
$T_{\min} = 0.848, \ T_{\max} = 0.872$	$k = -30 \rightarrow 30$
16165 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.138$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.053P)^{2} + 2.8562P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5750 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
434 parameters	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.51 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 0.03907 (17) Cu1 0.41218 (5) 0.128914 (18) 0.88185 (4) 01 0.6773 (3) 0.12292 (11) 1.0021 (2) 0.0493 (7) O2 0.5624 (3) 0.15418 (10) 0.8330(2)0.0416(7) O3 0.9044(3)0.15772 (12) 0.9953(2)0.0487(7)H3 0.073* 0.8800 0.1396 1.0397 04 0.9802(5)0.43639(17) 0.8832(4)0.1032(14)05 0.38476 (16) 0.8257 (4) 1.1068 (4) 0.0910(13) 06 0.42004 (17) 0.9367 (4) 0.7058 (4) 0.0890 (12) O1W 0.1694(5)0.02577 (18) 0.5874(4)0.1147 (15) H2W 0.1658 0.0353 0.5204 0.172* H1W 0.1207 -0.00110.5773 0.172* O2W 0.6493 (5) 0.92807 (19) 0.1224 (16) 0.5360(4)H4W 0.6297 0.9527 0.4877 0.184* H3W 0.7332 0.9259 0.5527 0.184* N1 0.4082 (3) 0.19785 (13) 0.9567 (3) 0.0407 (8) N2 0.2541 (3) 0.16914 (13) 0.7536(3) 0.0422 (8) N3 0.3174 (3) 0.08879 (13) 0.9731 (3) 0.0432 (8) N4 0.4228 (3) 0.05833 (12) 0.8213 (3) 0.0414 (8) N5 1.0072 (5) 0.41464 (17) 0.8048 (4) 0.0656 (11) C1 0.4840 (4) 0.20910 (18) 1.0623 (4) 0.0509 (11) H10.5372 0.1831 1.1055 0.061* C2 0.4873 (5) 0.2571 (2) 1.1103 (4) 0.0637 (14) H2 0.5397 0.2634 1.1851 0.076* 0.2954 (2) C3 0.4119 (5) 1.0458 (5) 0.0705 (16) H3A 0.4146 0.3287 1.0753 0.085* C4 0.3318 (5) 0.28473 (18) 0.9368 (5) 0.0644 (14) H4 0.2789 0.3107 0.8928 0.077* C5 0.3301 (4) 0.8930(4) 0.0442 (10) 0.23523 (16) C6 0.2447 (4) 0.21925 (16) 0.7790 (3) 0.0415 (10) C7 0.1595 (5) 0.25249 (19) 0.7035 (4) 0.0591 (13) H70.1552 0.2873 0.7221 0.071* C8 0.0714 (15) 0.0810 (5) 0.2338(2)0.6007 (4) H8 0.0226 0.2557 0.5488 0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C9	0.0892 (5)	0.1829 (2)	0.5753 (4)	0.0701 (15)
Н9	0.0365	0.1695	0.5059	0.084*
C10	0.1764 (5)	0.15173 (18)	0.6536 (4)	0.0547 (12)
H10	0.1814	0.1168	0.6360	0.066*
C11	0.2639 (5)	0.10780 (19)	1.0494 (4)	0.0549 (12)
H11	0.2707	0.1433	1.0639	0.066*
C12	0.1999 (5)	0.0782 (2)	1.1073 (4)	0.0670 (14)
H12	0.1633	0.0928	1.1596	0.080*
C13	0.1914 (6)	0.0260 (2)	1.0854 (5)	0.0752 (16)
H13	0.1497	0.0044	1.1242	0.090*
C14	0.2437 (5)	0.0054 (2)	1.0070 (4)	0.0623 (13)
H14	0.2363	-0.0300	0.9911	0.075*
C15	0.3082 (4)	0.03765 (16)	0.9512 (4)	0.0434 (10)
C16	0.3693 (4)	0.02037 (16)	0.8674 (3)	0.0417 (10)
C17	0.3744 (5)	-0.03074 (17)	0.8344 (4)	0.0560 (12)
H17	0.3370	-0.0569	0.8664	0.067*
C18	0.4351 (5)	-0.04255 (18)	0.7543 (4)	0.0639 (14)
H18	0.4390	-0.0768	0.7316	0.077*
C19	0.4897 (5)	-0.00371 (18)	0.7080 (4)	0.0626 (13)
H19	0.5320	-0.0109	0.6541	0.075*
C20	0.4803 (5)	0.04618 (17)	0.7434 (4)	0.0518 (12)
H20	0.5161	0.0728	0.7112	0.062*
C21	0.6700 (4)	0.14445 (14)	0.9122 (4)	0.0387 (10)
C22	0.8000 (4)	0.16241 (15)	0.8909 (3)	0.0376 (9)
C23	0.7908 (4)	0.21966 (15)	0.8583 (3)	0.0393 (10)
C24	0.7320 (5)	0.25356 (16)	0.9140 (4)	0.0506 (11)
H24	0.6962	0.2409	0.9687	0.061*
C25	0.7252 (5)	0.30584 (18)	0.8902 (5)	0.0645 (14)
H25	0.6849	0.3282	0.9286	0.077*
C26	0.7776 (5)	0.32494 (18)	0.8103 (4)	0.0606 (13)
H26	0.7723	0.3602	0.7932	0.073*
C27	0.8376 (5)	0.29183 (19)	0.7558 (4)	0.0610(13)
H27	0.8742	0.3048	0.7020	0.073*
C28	0.8451 (4)	0.23917 (17)	0.7792 (4)	0.0511 (11)
H28	0.8868	0.2171	0.7415	0.061*
C29	0.8237 (4)	0.12686 (15)	0.7997 (3)	0.0392 (9)
C30	0.7340 (5)	0.12378 (17)	0.6913 (4)	0.0546 (12)
H30	0.6588	0.1447	0.6715	0.066*
C31	0.7548 (6)	0.0900 (2)	0.6122 (4)	0.0709 (15)
H31	0.6929	0.0877	0.5397	0.085*
C32	0.8672.(7)	0.0595 (2)	0 6401 (6)	0 0791 (17)
H32	0.8820	0.0370	0 5864	0.095*
C33	0.9555 (6)	0.0627 (2)	0.7457 (6)	0 0794 (17)
H33	1 0314	0.0422	0 7646	0.095*
C34	0.9351 (5)	0.09591 (18)	0.8255 (4)	0.0592 (13)
H34	0.9971	0.0975	0.8980	0.071*
11.5 T	0.77/1	0.0775	0.0700	0.071

Atomic dis	placement	parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0364 (3)	0.0342 (3)	0.0450 (3)	-0.0020 (2)	0.0105 (2)	0.0002 (2)
01	0.0513 (19)	0.0515 (18)	0.0466 (18)	0.0013 (15)	0.0173 (15)	0.0154 (14)
02	0.0374 (17)	0.0392 (16)	0.0461 (17)	-0.0033 (13)	0.0101 (14)	0.0019 (13)
03	0.0391 (17)	0.056 (2)	0.0426 (17)	-0.0052 (14)	0.0012 (14)	0.0060 (14)
O4	0.122 (4)	0.099 (3)	0.101 (3)	-0.014 (3)	0.052 (3)	-0.037 (3)
05	0.083 (3)	0.087 (3)	0.106 (3)	0.021 (2)	0.035 (3)	0.023 (2)
O6	0.072 (3)	0.113 (3)	0.075 (3)	-0.002 (2)	0.013 (2)	0.013 (2)
O1W	0.105 (4)	0.113 (4)	0.120 (4)	-0.008 (3)	0.025 (3)	-0.028 (3)
O2W	0.091 (3)	0.142 (4)	0.126 (4)	0.007 (3)	0.022 (3)	0.002 (3)
N1	0.0338 (19)	0.045 (2)	0.043 (2)	-0.0035 (16)	0.0108 (17)	-0.0041 (16)
N2	0.036 (2)	0.040 (2)	0.046 (2)	0.0015 (16)	0.0063 (17)	-0.0025 (16)
N3	0.037 (2)	0.043 (2)	0.049 (2)	0.0013 (16)	0.0127 (17)	0.0030 (16)
N4	0.040 (2)	0.040 (2)	0.043 (2)	-0.0030 (16)	0.0110 (17)	0.0023 (16)
N5	0.069 (3)	0.060 (3)	0.072 (3)	-0.016 (2)	0.028 (3)	0.000 (2)
C1	0.042 (3)	0.057 (3)	0.051 (3)	-0.003 (2)	0.010 (2)	-0.008 (2)
C2	0.050 (3)	0.075 (4)	0.066 (3)	-0.008 (3)	0.017 (3)	-0.027 (3)
C3	0.061 (3)	0.058 (3)	0.091 (4)	-0.004 (3)	0.021 (3)	-0.039 (3)
C4	0.058 (3)	0.047 (3)	0.084 (4)	0.008 (2)	0.016 (3)	-0.007 (3)
C5	0.035 (2)	0.042 (2)	0.055 (3)	0.001 (2)	0.014 (2)	-0.006 (2)
C6	0.034 (2)	0.046 (3)	0.044 (3)	0.0041 (19)	0.011 (2)	0.000(2)
C7	0.051 (3)	0.056 (3)	0.065 (3)	0.016 (2)	0.011 (3)	0.012 (2)
C8	0.054 (3)	0.087 (4)	0.060 (4)	0.023 (3)	-0.002 (3)	0.014 (3)
C9	0.053 (3)	0.090 (4)	0.051 (3)	0.006 (3)	-0.007 (3)	-0.005 (3)
C10	0.050 (3)	0.051 (3)	0.054 (3)	0.001 (2)	0.003 (2)	-0.006 (2)
C11	0.050 (3)	0.059 (3)	0.061 (3)	0.000 (2)	0.026 (3)	0.000 (2)
C12	0.061 (3)	0.081 (4)	0.069 (3)	-0.001 (3)	0.034 (3)	0.005 (3)
C13	0.083 (4)	0.078 (4)	0.076 (4)	-0.013 (3)	0.041 (3)	0.018 (3)
C14	0.067 (3)	0.056 (3)	0.066 (3)	-0.006 (3)	0.023 (3)	0.011 (2)
C15	0.035 (2)	0.043 (3)	0.046 (3)	-0.0045 (19)	0.003 (2)	0.009 (2)
C16	0.036 (2)	0.040 (2)	0.043 (3)	-0.0039 (18)	0.003 (2)	0.0070 (19)
C17	0.064 (3)	0.037 (3)	0.065 (3)	-0.009 (2)	0.018 (3)	0.004 (2)
C18	0.075 (4)	0.040 (3)	0.072 (4)	-0.001 (3)	0.018 (3)	-0.007 (2)
C19	0.071 (4)	0.049 (3)	0.073 (3)	0.000 (3)	0.030 (3)	-0.010 (2)
C20	0.054 (3)	0.049 (3)	0.054 (3)	-0.009 (2)	0.018 (2)	-0.003 (2)
C21	0.041 (3)	0.030 (2)	0.044 (3)	0.0003 (18)	0.012 (2)	-0.0027 (18)
C22	0.033 (2)	0.041 (2)	0.037 (2)	-0.0013 (18)	0.0094 (19)	0.0019 (18)
C23	0.035 (2)	0.035 (2)	0.044 (2)	-0.0055 (18)	0.008 (2)	-0.0010 (18)
C24	0.060 (3)	0.040 (3)	0.057 (3)	-0.007 (2)	0.025 (2)	-0.003 (2)
C25	0.070 (4)	0.045 (3)	0.080 (4)	-0.001 (3)	0.025 (3)	-0.008 (3)
C26	0.055 (3)	0.041 (3)	0.075 (4)	-0.006 (2)	0.006 (3)	0.007 (3)
C27	0.061 (3)	0.053 (3)	0.067 (3)	-0.013 (3)	0.018 (3)	0.017 (3)
C28	0.051 (3)	0.050 (3)	0.056 (3)	-0.005 (2)	0.022 (2)	0.003 (2)
C29	0.039 (2)	0.036 (2)	0.047 (2)	-0.0025 (19)	0.019 (2)	0.0019 (19)
C30	0.067 (3)	0.050 (3)	0.047 (3)	0.003 (2)	0.018 (2)	-0.003 (2)

C31	0 095 (5)	0.065(3)	0.054(3)	-0.010(3)	0.025(3)	-0.009(3)
C32	0.107 (5)	0.058 (3)	0.091 (5)	0.005 (3)	0.058(4)	-0.012(3)
C33	0.073 (4)	0 074 (4)	0.099 (5)	0.016 (3)	0.040(4)	-0.001(3)
C34	0.075(1)	0.063(3)	0.069 (3)	0.010(2)	0.010(1)	0.001(3)
	0.010(0)	0.005 (5)	0.009 (3)	0.010 (2)	0.022 (3)	0.002(5)
Geometric param	neters (Å, °)					
Cu1—O2		1.982 (3)	C11-	—H11	(0.9300
Cu1—N4		1.982 (3)	C12-	—C13	1	1.369 (7)
Cu1—N1		2.007 (3)	C12-	—H12	(0.9300
Cu1—N3		2.013 (3)	C13-	—C14	1	1.362 (7)
Cu1—N2		2.174 (3)	C13-	—Н13	(0.9300
O1—C21		1.220 (5)	C14	—C15	1	1.388 (6)
O2—C21		1.274 (5)	C14	—H14	(0.9300
O3—C22		1.417 (4)	C15-	—C16	1	1.450 (6)
O3—H3		0.8200	C16	—C17	1	1.384 (6)
O4—N5		1.225 (5)	C17-	—C18	1	1.370 (6)
O5—N5		1.267 (5)	C17-	—H17	(0.9300
O6—N5		1.223 (5)	C18	—C19	1	1.367 (7)
O1W—H2W		0.8499	C18	—H18	(0.9300
O1W—H1W		0.8501	C19-	—C20	1	1.371 (6)
O2W—H4W		0.8499	C19-	—Н19	(0.9300
O2W—H3W		0.8499	C20	—H20	(0.9300
N1—C1		1.330 (5)	C21-	—C22	1	1.553 (6)
N1—C5		1.350 (5)	C22-	—C23	1	1.523 (5)
N2-C10		1.328 (5)	C22-	—C29	1	1.530 (5)
N2—C6		1.339 (5)	C23-	—C28	1	1.374 (6)
N3—C11		1.334 (5)	C23-	—C24	1	1.375 (6)
N3—C15		1.342 (5)	C24	—C25	1	1.375 (6)
N4—C20		1.326 (5)	C24	—H24	(0.9300
N4—C16		1.343 (5)	C25-	—C26	1	1.365 (7)
C1—C2		1.366 (6)	C25-	—H25	(0.9300
C1—H1		0.9300	C26	—C27	1	1.360 (7)
C2—C3		1.359 (7)	C26	—H26	(0.9300
С2—Н2		0.9300	C27-	—C28	1	1.384 (6)
C3—C4		1.374 (7)	C27-	—H27	(0.9300
С3—НЗА		0.9300	C28-	—H28	(0.9300
C4—C5		1.383 (6)	C29-	—C34	1	1.378 (6)
C4—H4		0.9300	C29-	—C30	1	1.379 (6)
C5—C6		1.473 (6)	C30	C31	1	1.375 (6)
C6—C7		1.375 (6)	C30-	—Н30	(0.9300
С7—С8		1.368 (7)	C31-	—C32	1	1.379 (8)
С7—Н7		0.9300	C31-	—H31	(0.9300
С8—С9		1.356 (7)	C32-	—C33	1	1.347 (8)
C8—H8		0.9300	C32-	—Н32	(0.9300
C9—C10		1.369 (6)	C33-	—C34	1	1.371 (7)
С9—Н9		0.9300	C33-	—Н33	(0.9300
C10—H10		0.9300	C34-	—H34	(0.9300
C11—C12		1.362 (6)				

O2—Cu1—N4	92.34 (13)	C12—C13—H13	119.8
O2—Cu1—N1	89.06 (12)	C13—C14—C15	119.5 (5)
N4—Cu1—N1	175.10 (14)	C13—C14—H14	120.3
O2—Cu1—N3	158.18 (12)	C15-C14-H14	120.3
N4—Cu1—N3	80.61 (14)	N3—C15—C14	120.2 (4)
N1—Cu1—N3	96.40 (14)	N3—C15—C16	115.1 (4)
O2—Cu1—N2	97.69 (12)	C14—C15—C16	124.7 (4)
N4—Cu1—N2	106.57 (13)	N4—C16—C17	120.5 (4)
N1—Cu1—N2	77.87 (13)	N4—C16—C15	114.9 (4)
N3—Cu1—N2	104.11 (13)	C17—C16—C15	124.7 (4)
C21—O2—Cu1	108.4 (3)	C18—C17—C16	119.6 (4)
С22—О3—Н3	109.5	С18—С17—Н17	120.2
H2W—O1W—H1W	104.6	С16—С17—Н17	120.2
H4W—O2W—H3W	103.2	C19—C18—C17	119.6 (4)
C1—N1—C5	119.1 (4)	C19—C18—H18	120.2
C1—N1—Cu1	123.3 (3)	C17—C18—H18	120.2
C5—N1—Cu1	117.5 (3)	C18—C19—C20	118.1 (5)
C10—N2—C6	118.1 (4)	С18—С19—Н19	120.9
C10—N2—Cu1	128.9 (3)	С20—С19—Н19	120.9
C6—N2—Cu1	112.8 (3)	N4—C20—C19	123.2 (4)
C11—N3—C15	118.8 (4)	N4—C20—H20	118.4
C11—N3—Cu1	127.0 (3)	C19—C20—H20	118.4
C15—N3—Cu1	114.1 (3)	O1—C21—O2	125.0 (4)
C20—N4—C16	119.1 (4)	O1—C21—C22	118.8 (4)
C20—N4—Cu1	125.6 (3)	O2—C21—C22	116.3 (3)
C16—N4—Cu1	115.3 (3)	O3—C22—C23	106.8 (3)
O6—N5—O4	120.8 (5)	O3—C22—C29	110.7 (3)
O6—N5—O5	118.8 (5)	C23—C22—C29	113.4 (3)
O4—N5—O5	120.3 (5)	O3—C22—C21	107.8 (3)
N1—C1—C2	123.2 (5)	C23—C22—C21	110.2 (3)
N1—C1—H1	118.4	C29—C22—C21	107.7 (3)
C2—C1—H1	118.4	C28—C23—C24	118.6 (4)
C3—C2—C1	118.2 (5)	C28—C23—C22	122.3 (4)
С3—С2—Н2	120.9	C24—C23—C22	119.0 (4)
С1—С2—Н2	120.9	C23—C24—C25	121.2 (4)
C2—C3—C4	119.8 (5)	C23—C24—H24	119.4
С2—С3—НЗА	120.1	C25—C24—H24	119.4
С4—С3—НЗА	120.1	C26—C25—C24	120.0 (5)
C3—C4—C5	119.6 (5)	С26—С25—Н25	120.0
C3—C4—H4	120.2	C24—C25—H25	120.0
C5—C4—H4	120.2	C27—C26—C25	119.3 (5)
N1—C5—C4	120.0 (4)	C27—C26—H26	120.4
N1—C5—C6	116.0 (4)	C25—C26—H26	120.4
C4—C5—C6	124.0 (4)	C26—C27—C28	121.2 (5)
N2	121.6 (4)	С26—С27—Н27	119.4
N2—C6—C5	115.0 (3)	С28—С27—Н27	119.4
C7—C6—C5	123.4 (4)	C23—C28—C27	119.8 (4)
C8—C7—C6	119.2 (5)	C23—C28—H28	120.1
С8—С7—Н7	120.4	C27—C28—H28	120.1

С6—С7—Н7	120.4	C34—C29—C30	118.2 (4)
С9—С8—С7	119.3 (5)	C34—C29—C22	120.2 (4)
С9—С8—Н8	120.3	C30—C29—C22	121.6 (4)
С7—С8—Н8	120.3	C31—C30—C29	120.5 (5)
C8—C9—C10	118.8 (5)	С31—С30—Н30	119.7
С8—С9—Н9	120.6	С29—С30—Н30	119.7
С10—С9—Н9	120.6	C30—C31—C32	120.1 (5)
N2-C10-C9	122.9 (4)	C30—C31—H31	119.9
N2-C10-H10	118.6	C32—C31—H31	119.9
С9—С10—Н10	118.6	C33—C32—C31	119.5 (5)
N3-C11-C12	123.7 (5)	С33—С32—Н32	120.3
N3—C11—H11	118.2	C31—C32—H32	120.3
С12—С11—Н11	118.2	C32—C33—C34	120.9 (5)
C11—C12—C13	117.4 (5)	С32—С33—Н33	119.6
C11—C12—H12	121.3	С34—С33—Н33	119.6
C13—C12—H12	121.3	C33—C34—C29	120.8 (5)
C14—C13—C12	120.4 (5)	С33—С34—Н34	119.6
C14—C13—H13	119.8	C29—C34—H34	119.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2W—H3W···O5 ⁱ	0.85	2.16	2.844 (6)	138
O1W—H1W···O4 ⁱⁱ	0.85	2.07	2.884 (7)	159
O2W—H3W···O1W ⁱⁱⁱ	0.85	2.59	3.041 (7)	114
O1W—H2W···O2W ⁱⁱⁱ	0.85	2.46	3.041 (7)	126
O1W—H2W···O4 ^{iv}	0.85	2.28	2.856 (6)	125
O3—H3…O6 ^v	0.82	2.48	3.210 (5)	149
O3—H3…O1	0.82	2.10	2.597 (4)	119
C20—H20····O2	0.93	2.53	3.019 (5)	113
С30—Н30…О2	0.93	2.52	2.994 (5)	112
С34—Н34…О3	0.93	2.35	2.728 (6)	104
C10—H10…O1W	0.93	2.41	3.341 (7)	174
C8—H8····O3 ^{iv}	0.93	2.54	3.389 (6)	152
C4—H4····O5 ^{vi}	0.93	2.59	3.488 (6)	162
C12—H12···O5 ^{vii}	0.93	2.38	3.285 (7)	165
C14—H14···O1 ^{viii}	0.93	2.56	3.420 (6)	155
C17—H17···O1 ^{viii}	0.93	2.39	3.270 (5)	159

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+3/2; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, -*y*+1/2, *z*-1/2; (v) *x*, -*y*+1/2, *z*+1/2; (vi) *x*-1, *y*, *z*; (vii) *x*-1, -*y*+1/2, *z*+1/2; (viii) -*x*+1, -*y*, -*z*+2.

`₽^{02₩}

